

0040-4039(94)01962-2

A POLYMER-SUPPORTED C₂-SYMMETRIC CHIRAL AUXILIARY: PREPARATION OF **NON-RACEMIC 3,5-DISUBSTITUTED-y-BUTYROLACTONES.**

Hong-sik Moon, Neil E. Schore, and Mark J. Kurth* Department of Chemistry University of California. Davis Davis, California 95616

Abstract: A polymer-bound "C₂-symmetric" pyrrolidine-based auxiliary is reported and shown to *serve an effective control element for a three-step process consisting of N-acylation, Cm-alkylation, and subsequent iodolactonization to deliver optically active 3,5-disubstituted-y-butyrolactone.*

Recent interest in the preparation of libraries of molecularly diverse compounds¹ has led to the development of a number of intriguing polymer-supported strategies for the synthesis of peptide² **(combinatorial) and, to a lesser extent, small organic molecules (analogous) collections. fnherent to these strategies are the benefits of polymer-supported synthesis which include, but are not limited to, increased ease of product isolation and modified reaction selectivity. Unlike "combinatorial synthesis" where polymer-supported reaction types are quite limited (i.e., peptide formation), extension of Merrifield's** pioneering polypeptide work⁴ to organic synthesis problems^{5,6} has the potential to deliver analogue libraries (analogous organic synthesis^{3c}) which arise from and encompass an impressive array of reagent **and chemical reaction diversity. In that context, interest in analogous synthesis commissions the further development of polymer-based, enantioselective methodologies for organic synthesis. We report herein a** polymer-bound "C₂-symmetric" (i.e., functional but not truly C₂-symmetric) pyrrolidine-based auxiliary **which can be used as an efficient chiral controller in amide alkylation and iodolactonization reactions.7**

The reduced number of competing diastereomeric transition states available to C_2 -symmetric **auxiliaries often results in higher stereoselectivity. 8 This, coupled with the documented advantages of polymer-bound auxiliaries,⁹ led us to consider resin-bound auxiliary 1a as a promising candidate for a three-step process consisting of N-acylation, Ca-alkylation, and subsequent iodolactonization to deliver optically pure 3,5-disubstituted-r-butyrolactone 2.**

The C₂-symmetric pyrrolidine-based auxiliary required to launch this study, trans-(2R,5R)-(N**propionyl)-2,5-bis(hydroxymethyl)pyrrolidine (3), is readily available from 1,2:5,6-di-O-isopropylidene-Dmannitol by adaptation of chemistry developed by Marzi. 10 Taking advantage of the effective site isolation afforded by polymer attachment,11 a THF solution of the potasslum alkoxide of pyrrolidine 3 was directly** coupled to DMF swollen Merrifield's resin (® = polystyrene/2% divinyl benzene co-polymer; 1 meq. Cl/g) **containing catalytic 18-crown-6. Incubation of this mixture at 90°C for five days followed by filtration and thorough washing of the resulting resin delivered 4 as evidenced by the appearance of an FTIR (KBr)** bands for the resulting hydroxyl and amide moieties (1647 and 3440 cm⁻¹, respectively). Attempted Ca**alkylation of amide 4 was complicated by competing alkoxide alkylation, so 4 was first converted to C2** symmetric pyrrolidine 5 (1-methyl-2-pyrrolidone swollen resin treated with sodium hydride and benzyl **bromide; 100°C 2 d; disappearance of the 3440 cm-t FTIR band).**

Treating THF swollen resin 5 with lithium diisopropylamide (2 eq., 0°C 30 min) presumably gives the highly favored Z-enolate¹² which, upon treatment with allyl iodide (3 eq.; 0°C \rightarrow r.t., 24 h), produced Ca**alkylated resin 6. While the stereoselectivity of this transformation could not be established at this stage,** final iodolactone ratios established this Ca-alkylation selectivity to be 93.5:6.5 *(vide infra).*

Subsequent iodolactonization of 6 was effected by treating a THF/H₂O (1.5:1) suspension of this resin with iodine for three days at room temperature. Filtration and ether washing of the resin delivered only γ butyrolactones 7 and 9¹³ (93.5:6.5 ratio; 34% overall yield from 3); no trace of lactones 8 or 10 were **detected in the crude reaction mixture. These lactone product ratios establish the polymer-supported selectivity of both the alkylation (>14:1) and electrophilic cyclization (>99:1) steps. When contrasted with** the L-prolinol derived auxiliary 1b, C₂-symmetric pyrrolidine 1a is a great deal more selective in both the **Ca-alkylation step** (1 b **affords 2:l selectivity) and, suprisingly, the iodolactonization step (1 b affords 92:8** selectivity).^{6e} While consistent with previous reports of the N,N-dimethylamino moiety directing face selectivity,¹⁴ A(1,3) strain¹⁵ in polymeric amide 6 is apparently even more pronounced which forces the α alkyl substituent to adopt a quasi-axial orientation favoring *trans*-selective iodolactonization.

Transformation $6 \rightarrow 7$ also liberates chiral resin 1a as evidenced by disappearance of the FTIR amide band at 1647 cm⁻¹; this chiral auxiliary is trivial to isolate by simple filtration of the crude reaction mixture.

8916

Moreover, we were pleased to find that reuse of resin 1a is eminently practical and, by N-acylation, Caalkylation, and iodolactonization, again leads to chiral y-butyrolactones.

Thus, by swelling recovered 1a [washed sequentially with DMF, H₂O, CH₃OH, dioxane, acetone, THF, and Et₂O; dried overnight under vacuum (0.8 torr)] in THF and treating the resulting resin with 4-pentenoyl **chloride and triethylamine (2 eq.'s each; r.t., 2 d), we obtain 4-pentenoylamide 11 (C=O FTIR absorbance at 1639 cm-l. Enolate formation of THF swollen** 11 (2 **eq. LDA, THF, 0°C) followed by Ca-alkylation with** methyl iodide (3 eq.) delivers resin 12. While we anticipated that resin 12 was the C_{α} epimer of resin 6, we were indeed gratified to find that iodolactonization (l_2 , THF:H₂O::1.5:1, r.t., 3d) delivered _Y-butyrolactone **9 as the major product (35% overall yield from la). The reduced enantioselectivity from 11 (81% ee) relative to 5 (67% ee) most probably reflects the reduced steric requirements of methyl versus ally1 iodide.16 Again, cis-lactones 8 and 10 were not detected in the crude reaction mixture from 12. It is also** interesting to note that nor-methyl lactone 13, which would arise by electrophilic cyclization of 11, was not **detected in the crude iodolactonization reaction mixture, indicating that the polymer-supported Camethylation of 11 is an efficient process. Finally, resin la can again be recovered by filtration and** washing [washed sequentially with DMF, H₂O, CH₃OH, dioxane, acetone, THF, and Et₂O; dried overnight **under vacuum (0.8 torr)]. If care has been taken to avoid mechanical damage to the resin, this chiral auxiliary can be reused with no loss of chemical yield or stereoselectivity.**

In summary, we find that polymer-supported C₂-symmetric pyrrolidine 1a is an effective chiral auxiliary **which is easily recovered and reused. The three-step process presented here promises to be an excellent** route to chiral, trans-2,5-disubstituted-γ-butyrolactones.

Acknowledgment: We thank the National Science Foundation (CHE-9406891) for financial support.

References and Notes:

- **1** For excellent reviews, see: (a) Jung, G.; Beck-Sickinger, A. G. Angew. Chem., Int. Ed. Engl. **1992**, **31, 367-83. (b) Pavia, M. R.; Sawyer, T. K.; Moos, W.. H.** *Bborg. Med. Chem. Lett. 1993,3,387-96.*
- **2 (a) Fodor, S. P. A.; Read, J. L.; Pirrung, M. C.; @ryer, L.; Lu, A. T.; Solas, D. Science 1991,257, 767- 73. (b) Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.; Kazmiersky, W. M.: Knapp, R. J. Nature**

1991, 354, 82-4. (c) Houghten, Ft. A.; Pinilla, C.; BlondelIe, S. E.; Appel, J. R.; Dooley, C. T.; cuervo, J. H. Nature 1991, 354, 84-6. (d) Zuckermann, R. N.; Kerr, J. M.; Siani, M. A.; Banville, S. C.; Santi, **D. V.** *Proc.* **Nat/.** *Acad. Sci, U.S.A.* **1992, 89, 4505-g. (e) Nikolaiev. V.; Stierandova, A.; Krchnak, V.; Seligmann, 8.; Lam, K. S.; Salmon, S. E.; Lebl, M.** *Peptide Res.* **1993, 6, 161-70. (f) Kerr, J. M.; Banville, S. C.; Zuckermann, R. N.** *J. Am. Chem. Sot.* **1993, 7 75, 2529-31. (g) Nielsen, J.; Brenner,** S.; Janda, K. D. *J. Am. Chem. Soc.* **1993**, *115*, 9812-3. (h) Ohlmeyer, M. H. J.; Swanson, R. N.; **Dillard, L. W.; Reader, J. C.; Asouline, G.; Kobayashi, R.; Wigler, M.; Still, W. C.** *Proc. Nat!. Acad. Sci. USA* **1993, 90, 10922-6. (i) Borchardt, A.; Still, W. C.** *J. Am. Chem. Sot.* **1994, 116, 373-4.**

- **3 (a) Bunin, B. A.; Ellman, J. A.** *J. Am. Chem. Sot.* **1992, 774, 10997-a. (b) Dewitt, S. H.; Kiely, J. S.; Stankovic, C. J.; Schroeder, M. C.; Cody, D. M. R.; Pavia, M. R.** *Proc. Nat/. Acad. Sci, U.S.A. 1993, 90,* **6909-13. (c) Chen, C.; Randall, L. A. A.: Miller, Ft. B.; Jones, D. A.: Kutth, M. J.** *J. Am. Chem.* SOC. **1994, 7 76, 2661-2.**
- **4 Merrifield, R. 6.** *J. Am. Chem. Sot.* **1963, 85, 2149-54.**
- **5 Reviews: (a) Hodge, P. In** *Polymer-supported* **Reactions** *in Organic Synthesis;* **Hodge, P., Sherrington, D. C., Eds.; Wiley-Interscience: Chichester, 1980; Chapter** *2.* **(b) Pittman, C. U., Jr. In** *Ibid.;* **Chapter 5. (c) Bergbreiter, D.E. In** *Polymeric Reagents and* **Catalysts; Ford, W. T., Ed.;** *ACS Symp Ser.* **1986, 308, 17. (d) Hodge, P. In** *Synthesis and Separations using Functional Polymers;* **Sherrington, D. C.; Hodge, P., Eds.; Wiley: Chichester, 1988; Chapter 2. (e) Hodge, P. in** *innovation and Perspectives in Solid Phase Synthesis;* **Epton, R., Ed.; Collected Papers, First International Symposium, 1989. Oxford, Eng. SPCC (UK) Ltd., Birmingham.**
- **6** (a) Schore, N. E.; Najdi, S. D. J. Amer. Chem. Soc. 1990, 112, 441-2. (b) Gerlach, M. Jördens, F.; **Kuhn, H.; Neumann, W. P.; Peterseim, M.** *J. Org. Chem.* **1991, 56, 5971-2. (c) Blanton, J. R.; Salley, J. M.** *J. Org. Chem.* **1991, 56, 490-l. (d) Beebe, X.; Schore, N. E.; Kurth, M. J.** *J. Am. Chem. Sot.* **1992, 7 74, 10061-2. (e) Moon, H.-S.; Schore, N. E.; Kurth, M. J.** *J. Org. Chem.* **1992, 57, 6088-g.**
- **7 For related studies from our laboratory, see: (a) Najdi, S.; Kurth, M. J.** *Tetrahedron Lett.* **1990,** *31, 3279-82.* **(b) Najdi, S.; Reichlin, D.; Kurth, M. J.** *J. Org. Chem.* **1990, 55, 6241-4. (c) Reference 6e.**
- **8 (a) Whitesell, J. K.** *Chem. Rev. 1989, 89,* **1581-90. (b) Waldmann, H.** *Nachr. Chem. Tech. Lab.* **f991, 39, 1142-50.**
- **9 Aglietto, M.; Chiellini, E.; D'Antone, S.; Ruggeri. G.; Solaro, R.** *Pure Appl. Chem.* **1988, 60, 415-30.**
- **10 Marzi, M.; Misiti, D.** *Tetrahedron Lett.* **1989, 30, 6075-6.**
- **11 For a cautionary note, see: Crowley, J. I.; Rapoport, H.** *Act. Chem. Res.* **1978, 9,** *135-44.*
- **12 Evans, D. A.; Takacs, J. M.** *Tetrahedron Leti.* **1980,27,** *4233-6*
- **13 (a) 7 and 9 are known: see, reference 6e and Guenther, H. J.; Guntrum, E.; Jaeger, V.** *Liebigs Ann. Chem.* **1984, 15-30. (b) 7/9 ratios were determined by capillary GC analysis [30m p-cyclodextrin on OV-1701 column; 95% isothermal; H2 at 11.5 psi; Rf** *(3R,5S)-7 = 92.6* **min, Rf (3S,5R)-9 = 94.4 min].**
- **14 (a) Hart, D. J.; Huang, H. C.; Krishnamurthy, R.; Schwartz, T.** *J. Am. Chem. Sot.* **1989, 17 7, 7507-19. (b) Fuji, K.; Node, M.; Naniwa, Y. Kawabata, T.** *Tetrahedron Lett.* **1990, 37, 3175-a.**
- **15 (a) Johnson, F.** *Chem. Rev.* **1968, 68, 375-413. (b) Overman, L. E.; Yokomatsu, T.** *J. Org. Chem. 1980, 45, 5229-30. (c)* **Wilson, S. R.; Misra, Ft. N.** *Ibid. 1980,* **45, 5079-81.**
- **16 (a) Evans, D. A.: Bartroli, J.; Shih, T. L.** *J. Am. Chem. Sot.* **1981, 703, 2127-9. (b) Evans, D. A.; Ennis, M. D.; Mathre. D. J.** *J. Am. Chem. Sot.* **1982, 104, 1737-g.**

(Received in USA 21 August **1994;** *revised* **19 September 1994;** *accepted 3 October* **1994)**